Ncert Maths Book Class 10 Solutions Trigonometry

Class X Math
NCERT Solution for Intorudction to Trigonometry

1.   In ΔABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:

       (i) Sin A, cos A                                          (ii) sin C, cos C

Sol. In right ΔABC, we have:

        p = 24 cm, b = 7 cm

2.   In the figure, find tan P – cot R.

Sol. In right ΔPQR, using the Pythagoras theorem, we get

3.   If sin calculate cos A and tan A.

Sol. Let us consider, the right ΔABC, we have

        Perp. = BC and Hyp. = AC

4.   Given 15 cot A = 8, find sin A and sec A.

Sol. Let in the right ΔABC, we have

        15 cot A = 8

        Now, using Pythagoras theorem, we get

5.   Given calculate all other trigonometric ratios.

Sol. Let us have a right ΔABC in which ∠B = 90°

6.   If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

Sol. Let us consider a right ΔABC,

7.

Sol. Let us have a right ΔABC in which ∠B = 90°, and ∠A = θ

8.   If 3 cot A = 4, check whether

Sol. Let us consider a right angled ΔABC in which ∠B = 90°

        ∴For ∠A, we have:

        Base = AB and Perpendicular = BC. Also Hypotenuse = AC

        3 cot A = 4

9.   In triangle ABC, right-angled at B, if find the value of:

        (i) sin A cos C + cos A sin C                        (ii) cos A cos C – sin A sin C

Sol. Let us consider a right ΔABC, in which ∠B = 90°

        For ∠A, we have

        Base = AB

        Perpendicular = BC

        Hypotenuse = AC

10.   In ΔPQR, right-anlged at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Sol. It is given that PQR is a right Δ, such that ∠Q = 90°

        PR + QR = 25 cm

        and PQ = 5 cm

        Let QR = x cm

        ∴PR = (25 – x)

        ∴By Pythagoras theorem, we have

        PR2 = QR2 + PQ2

        ⇒(25 – x) = x2 + 52

        ⇒625 – 50x + x2 = x2 + 25

        ⇒–50x = –600

11.   State whether the following are true or false. Justify your answer.

        (i) The value of tan A is always less than,1.

        (ii) for some valued of angle A.

        (iii) cos A is the abbreviation �used for the cosecant of angle A.

        (iv) cot A is the product of cot and A.

        (v) for some angle q.

Sol. False [∵ A tangent of an angle is ratio of sides other than hupotenuse, which may be equal or unequal to each other.]

        (ii) True ∵ cos A is always less than 1

        (iii) False [∵ 'cosine A' is abbreviated as 'cos A'

        (iv) False ['cot A' is a single and meaningful term whereas 'cot' alone has no meaning.]

        (v) False [∵ is greater than 1 and sin B cannot be greater than 1.]

1.   Evaluate the following:

2.   Choose the correct option and justify your choice:

        (iii) When A = 0 then we have:

                sin 2A = sin 2(0°) = sin 0° = 0

                2 sin A = 2 sin 0 = 2 × 0 = 0

                i.e., sin 2A = 2 sin A for A = 0°

                Thus, the option (A) is correct

3.

Sol. From the table, we have tan

...(1)

        Also tan (A + B) =

(Given) ...(2)

        From (1) and (2), we get

             A + B = 60°

...(3)

        Similarly,

             A – B = 30°

...(4)

        Adding (3) and (4),

             2A = 90°.⇒ A = 45°

        Subtracting (4) from (3), we get

             2B = 30° ⇒ B = 15°.

4.   State whether the following are true or false. Justify your answer.,

        (i) sin (A + B) sin A + sin B.

        (ii) The value of sinθ increases as θincreases.

        (iii) The value of cosθ increases as θincreases.

        (iv) sinθ= cosθ for all values of q.

        (v) cot A is not defined for A = 0°.

Sol. (i) Let us take A = 30° and B = 60°

        Then LHS = sin (30° + 60°)

        = sin 90° = 1

        RHS = sin 30° + sin 60°

        Since, LHS ≠ RHS

        ∴ The statement sin (A + B) = sin A + sin B is false.

        (ii) Since the values of sinθincreases from 0 to 1 as theθincreases from 0 to 90°.

             ∴ The given statement

        (iii) Since the value of cosθecreases from1 to 0 asθincreases from 0 to 90°.

             ∴ The given statement is false.

        (iv) Let us take 0 = 30°

             ⇒ sin 30° ≠ cos 30°

             ∴ The given statement .is false.

        (iv) From the table, we have:

             cot 0° = not defined.

             ∴ The given statement is true.

1.   Evaluate:

2.   Show that:

        (i) tan 48° tan 23° tan 42° tan 67° = 1

        (ii) cos 38° cos 52° � sin 38° sin 52° = 0

Sol. (i) tan 48° tan 23° tan 42° tan 67° =1

             L.H.S. = tan 48° tan 23° tan 42° tan 67°

             = tan (90° � 42°) tan 23° tan.42°.tan (90.° � 23°)

             = cot 42° tan 23° tan 42° cot 23° [ tan (90 � A) = cot A]

             = R.H.S.

             Thus, tan 48° tan 23° tan 42° tan 67° = 1

        (ii) cos 38° cos 52° – sin 38° sin 52°

             L.H.S. = cos 38° cos 52° – sin 52°

             = cos 38° cos (90°– 38°)- sin 38° sin (90° – 38°)

             = cos(38° sin 38° – sin 38° cos 38°

             [∵sin (90° – A) = cos A and cos(90° – A) = sin A]

             = 0 = R.H.S.

             This, cos 38° cos 52° – sin 38° sin 52° = 0

3.   If tan 2A cot (A �V 18�X), where 2A is an acute angle, find the value of A.

Sol. Since tan 2A = cot (A –18°)

        Also tan (2A)° = cot (90° – 2A) [∵tan �� = cot (90° – θ)]

        ⇒ A – 18 = 90°– 2A

        ⇒ A + 2A = 90° + 18°

        ⇒ 3A = 108°

4.   If tan A = cot B, prove that A + B = 90°.

Sol. tan A = cot B (given)

        And cot B = tan (90° – B)

[∵tan (90° – θ ) = cot θ )]

        ∴ A = 90° – B

        ∴ A + B = 90°.

5.   If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.

Sol. sec 4A = cosec (A – 20°)

        sec (4A) = cosec (90° – 4A)

[∵cosec (90° – θ ) = sec θ )]

        ∴ A – 20° = 90° – 4A

        ⇒A + 4A = 90° + 20°

        ⇒ 5A = 110°

6.   If A, B and C are interior angles of a triangle ABC, then show that

Sol. Since, sum of the angles of ΔABC is A° + B° + C° = 180°

        ∴ B + C = 180° – A

        Dividing both sides by 2,

7.   Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Sol. Since sin 67° = sin(90° – 23°)

        = cos 23°

[∵sin (90° – θ ) = cos θ ]

        Also, cos 75° = cos (90° – 15)

        = sin 15°

[∵cos(90° – θ ) = sin θ ]]

        ∴ We have:

        sin 67° + cos 75° = cos 23° + sin 15°.

1.   Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

2.   Write all the other trigonometric ratios of ∠A in terms of sec A.

3.   Evaluate:

        (ii) sin 25° cos 65° + cos 25° sin 65°

              sin 25° = sin (90° – 65) = cos 65°

[∵ sin (90° – A = cos A]

              And cos 25° = cos (90° – 65°) = sin 65°

[∵ cos (90° – A = sin A]

              ∴ sin 25° cos 65° + cos 25° sin 65°

              = cos 65° cos 65° + sin 65° sin 65°

              = (cos 65°)2 + (sin 65°)2

[∵ cos2 A + sin2 A = 1]

              = cos2 65° + sin2 65°

              = 1

4.   Choose the correct option. Justify your choice.

        (i) 9 sec2 A – 9 tan2 A = .................

              (a) 1               (b) 9              (c) 8              (d) 0

        (ii) (1 + tan θ + sec θ ) (1 + cot θ �n– cosec θ ) =

              (a) 0              (b) 1              (c) 2              (d) –1

        (iii) (sec A + tan A) (1 – sin A) = .................

              (a) sec A              (b) sin A               (c) cosec A              (d) cos A

Sol. (i) Since, 9 sec2 A – 9 tan2 A = 9 (sec2 A – tan2 A)

             = 9 (1)

[∵tan2 A + 1 = sec2 A ⇒ sec2 A – tan2 A = 1]

             = 9

             ∴ The option (b) is correct.

        (ii) Here, (1 + tan θ + sec θ) (1 +cot ∵ – cosec θ)

5.   Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

        (viii) (sin A + cosec A)2 + (cos A + sec A)2

              = sin2 A + cosec2 A + 2 sin A . cosec A + cos2 A + sec2 A + 2 cos A . sec A

              = (sin2 A + cos2 A) + cosec2 A + sec2 A + 2 + 2

[sin A . cosec A = 1 and sec A . cos A = 1]

              = 1 + cosec2 A + sec2 A + 4

[∵sin2 A + cos2 A = 1]

              = 5 + (1 + cot2 A) + (1 tan2 A)

[∵cosec2 A = 1 + cot2 A and sec2 A = 1 + tan2 A]

              = 7 + cot2 A + tan2 A

              = R.H.S.

        (ix) L.H.S. = (cosec A – sin A) (sec A – cos A)

Ncert Maths Book Class 10 Solutions Trigonometry

Source: https://www.careerlauncher.com/cbse-ncert/class-10/Math/CBSE-IntroductiontoTrigonometry-NCERTSolutions.html

0 Response to "Ncert Maths Book Class 10 Solutions Trigonometry"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel